
Katya Stukalova
Jongmin Jerome Baek

SUMMER 2016
FINAL REVIEW

Topics we will cover

Mutation: 5min

Recursive
Objects: 20min

Scheme: 20min

Logic: 5min

Tail Recursion:
5min

Nonlocal: 5min

Interfaces: 5min

OOP: 10min

0.
Object Oriented
Programming

Meaningful chunks of data

OOP Reminders
- Class attributes

- Belongs to class

- All instances of the class share one class

attribute

- Instance attributes

- Belongs to instance

- Not shared, each instance has its own

- Local variables

- Exists only inside a frame

What Would Python Display?

● lassie.health is 3 because
○ __init__ is not defined for

Dog, so Dog uses Animal's
__init__.

○ If an instance attribute and a
class attribute have the same
name, the instance attribute
takes precedence here,
because lassie is an
instance of Dog.

● Dog.health is 9 because it
explicitly asks for the class
attribute.

● Animal.health is not defined;
inheritance goes from parent to
child, not from child to parent.

class Animal(object):

def __init__(self, health):

 self.health = health

class Dog(Animal):

health = 9

>>> lassie = Dog(3)

>>> lassie.health

3

>>> Dog.health

9

>>> Animal.health

Error

(Credit: Andrew Huang)

Spot the Errors

class Cat(Pet):

 def __init__(self, name, yob, lives=9):

 Pet.__init__(self, name, yob)

 self.lives = 9

 def talk():

 print('meow')

(Credit: Andrew Huang)

Spot the Errors

class Cat(Pet):

 def __init__(self, name, yob, lives=9):

 Pet.__init__(self, name, yob)

 self.lives = 9 #need self.lives = lives

 def talk(): #need the parameter "self"

 print('meow')

(Credit: Andrew Huang)

Barking Up the Wrong Tree

Brian defined the following class:

class Dog(object):

def bark(self):

print("woof!")

One day Marvin wants his dog to bark differently.

>>> fido = Dog()

>>> fido.bark = "bow wow!"

Brian points out that this won’t work, since bark is a method, not a
string. Marvin tries to restore his mistake.

>>> fido.bark = Dog.bark

Barking Up the Wrong Tree

class Dog(object):

def bark(self):

print("woof!")

>>> fido = Dog()

>>> fido.bark = "bow wow!"

>>> fido.bark = Dog.bark

Concerning the last line of code,
which of the following
statements are True?

(1) Executing this assignment
statement will cause an error.

(2) After this assignment,
invoking fido.bark() will cause an
error.

(3) This assignment statement
will have no effect at all.

(4) None of the above criticisms
are valid. Everything will be fine.

Barking Up the Wrong Tree

class Dog(object):

def bark(self):

print("woof!")

>>> fido = Dog()

>>> fido.bark = "bow wow!"

>>> fido.bark = Dog.bark

Concerning the last line of code,
which of the following
statements are True?

(1) Executing this assignment
statement will cause an error.

(2) After this assignment,
invoking fido.bark() will cause an
error.

(3) This assignment statement
will have no effect at all.

(4) None of the above criticisms
are valid. Everything will be fine.

1.
Nonlocal

Change binding in first frame
where name is already bound

Nonlocal Facts

- Reassign nonlocal variables

in the parent frame

- If a variable is declared as

nonlocal, never look in the

global or current frame!

def good(luck):

nonlocal on #the

return final

Global Frame:

...

f23: good

...

X
X

.

.

.

Draw an environment diagram for
the following code.

from operator import add

def sixty(x):

def o(ne):

return x * ne

def A():

nonlocal o

o = lambda x: x * x

return 2

return add(o(3), add(A(), o(4)))

sixty(1)

Solution:

viv:

f2: vivian [P=f1]

f1: mars [P=G]
sam:

mars:

viv = 8

eric = 0

def mars(sam):

eric = 10

def viv(dan):

nonlocal viv

nonlocal sam

sam = 9

eric = 20

viv = dan

viv(sam)

return viv

dan = mars(lambda sam:

eric*sam)(viv)

Global Frame

func mars(sam)
 [P=G]

func lambda(sam)
[P=G]

func viv(dan)
 [P = f1]

nonlocal
vivian,
sam!!

9

f3: lambda [P=G]

viv: 8
eric: 0

x x

x
x

r.v.:

eric: 10

r.v.: None

dan:
eric: 20

sam: 8
r.v.: 0

dan: 0

2.
Mutation

Modify what is already there

ABC\FGH
a, b, c = 0, [], []

def f(a):

a += 1

def g(b):

b.append(1)

def h(c):

c = c + [1]

f(a)

g(b)

h(c)

Draw environment
diagrams for the
following piece of
code.

NOTE: We made a mistake during the review session.
Contrary to our claim, where c is a list, c = c + [1] is
NOT the same as c += [1]. c += [1] basically does what
append does. c = c + [1] makes a new list and makes c
point to it.

For h(c), we meant to write c = c + [1], as shown to the
right. During the review session, we wrote c += [1].
Please forgive us for this confusion.

ABC\FGH
a, b, c = 0, [], []

def f(a):

a += 1

def g(b):

b.append(1)

def h(c):

c += [1]

f(a)

g(b)

h(c)

Map & Mutate

Implement a function

map_mut that takes a list

L as an argument and

maps a function f onto

each element of the list.

You should mutate the

original list. Do NOT return

anything.

(Credit: Albert Wu)

def map_mut(f, L):

 """

 >>> L = [1, 2, 3, 4]

 >>> map_mut(lambda x: x**2, L)

 >>> L

 [1, 4, 9, 16]

 """

Map & Mutate

Implement a function

map_mut that takes a list

L as an argument and

maps a function f onto

each element of the list.

You should mutate the

original list. Do NOT return

anything.

(Credit: Albert Wu)

def map_mut(f, L):

 """

 >>> L = [1, 2, 3, 4]

 >>> map_mut(lambda x: x**2, L)

 >>> L

 [1, 4, 9, 16]

 """

 for i in range(len(L)):

 L[i] = f(L[i])

3.
Interfaces

A common tongue across classes

Magic Methods

Magic methods are special
methods that are called in
special ways.
ex)
lst[0] calls
lst.__getitem__(0).

__str__

__repr__

__getitem__

__len__

__init__

__iter__

__next__

The Iterator/Iterable Interface
○ Iterable

● Like a book

● Just sits there while the iterator runs all over it

● Must implement __iter__

● __iter__ gives bookmark of this book!

○ Iterator
● Like a bookmark

● Must implement __iter__ and __next__

● __next__ is like flipping to the next page

● If no more pages, raise an exception

Write an iterator that takes two strings as input and outputs the letters
interleaved when iterated over. Assume the strings are of equal
length.

class StringWeaver:

"""

>>> s = StringWeaver("ah", "HA")

>>> for char in s:

>>> print(char)

a

H

h

A

"""

def __init__(self, str1, str2):

YOUR CODE HERE

def __iter__(self):

YOUR CODE HERE

def __next__(self):

YOUR CODE HERE

Write an iterator that takes two strings as input and outputs the letters
interleaved when iterated over. Assume the strings are of equal
length.

class StringWeaver:

 def __init__(self, str1, str2):

 self.str1 = str1

 self.str2 = str2

 self.i = 0

 def __iter__(self):

 return self

 def __next__(self):

 if self.i == len(self.str1) + len(self.str2):

 raise StopIteration

 letter_to_output = ''

 if self.i % 2 == 0:

 letter_to_output = self.str1[self.i//2]

 else:

 letter_to_output = self.str2[self.i//2]

 self.i += 1

 return letter_to_output

4.
Recursive Objects

Heard you like objects...

Talk Binary to Me
class BinaryTree:
 empty = ()
 def __init__(self, entry, left=empty, right=empty):
 assert left is BinaryTree.empty or

D isinstance(left,BinaryTree)
 assert right is BinaryTree.empty or

D isinstance(right, BinaryTree)
 self.entry = entry
 self.left, self.right = left, right

Create a new class that is identical to BinaryTree, but
where each node has a parent as well as children.
class DLBT(BinaryTree):

A BinaryTree with a parent

def __init__(self,entry, left=BinaryTree.empty, D
 right=BinaryTree.empty):

BinaryTree.__init__(self, entry, left, right)

The Doubly Linked Binary Tree

Create a new class that is identical to BinaryTree, but
where each node has a parent as well as children.
class DLBT(BinaryTree):

A BinaryTree with a parent

def __init__(self,entry, left=BinaryTree.empty, D
 right=BinaryTree.empty):

BinaryTree.__init__(self, entry, left, right)

The Doubly Linked Binary Tree

self.parent = BinaryTree.empty

for b in [left, right]:

if b is not BinaryTree.empty

b.parent = self

Walking on Some Tree
Write a function that takes in a DLBT g and a list s. It
returns the number of paths through g whose entries are
elements of s.

return 1

[g.left, g.right, g.parent]

 sum([paths(n, s[1:]) for n in next_steps])

Write a function that takes in a DLBT g and a list s. It
returns the number of paths through g whose entries are
elements of s.
def paths(g, s):

if g is BinaryTree.empty or s == [] or g.entry != s[0]:

return 0

elif len(s) == 1:

__

else:

next_steps = _____________________________________

return ___

Diameter Alley
Write a function that takes as input a BinaryTree, g, and
returns its diameter. A diameter of a tree is the longest
path between any two leaves. You can use height to
determine the height of a tree.

4

5

9

72

6

1 3 8

10

1

2

4

5

3 6

Diameter Alley
Write a function that takes as input a BinaryTree, g, and
returns its diameter. A diameter of a tree is the longest
path between any two leaves. You can use height to
determine the height of a tree.
def diameter(g):

Diameter Alley
Write a function that takes as input a BinaryTree, g, and
returns its diameter. A diameter of a tree is the longest
path between any two leaves. You can use height to
determine the height of a tree.
def diameter(g):

left_height = height(g.left)

right_height = height(g.right)

left_diameter = diameter(g.left)

right_diameter = diameter(g.right)

return max(left_height + right_height + 1, d
left_diamater, right_diameter)

The Link Before Time
class Link:

empty = ()

def __init__(self, first, rest=empty):

if not (rest is Link.empty or isinstance(rest, Link)):
 raise ValueError('rest must be Link or empty')
 self.first = first
 self.rest = rest

def __repr__(self):

...

def __len__(self):

...

Linked List Revolution
Change the Link class so that each node now points to the
element directly after it AND directly before it.

class DoubleLink(Link):

def __init__(self, first, rest=Link.empty, prev=Link.empty):

Link.__init__(self, entry, first, rest)

Linked List Revolution
Change the Link class so that each node now points to the
element directly after it AND directly before it.

class DoubleLink(Link):

def __init__(self, first, rest=Link.empty, prev=Link.empty):

Link.__init__(self, entry, first, rest)

self.prev = Link.empty

if self.rest is not Link.empty:

self.rest.prev = self

The Giving Link
Given a sorted DoubleLink lnk, construct the corresponding
BST (NOT DLBT!) that is balanced

 1 2 3 4

1

2

3

4

X
1

2

3

4

lnk

 4

The Giving Link
Given a sorted DoubleLink lnk, construct the corresponding
BST (NOT DLBT!) that is balanced
def convert(lnk):

length = len(lnk)

if length == 0:

if length == 1:

if length == 2:

l, r = lnk, lnk

for i in range(length/2):

return BST()

1 X2

3

4

3

2

1

4
 1 2 3

 4

The Giving Link
Given a sorted DoubleLink lnk, construct the corresponding
BST (NOT DLBT!) that is balanced
def convert(lnk):

length = len(lnk)

if length == 0:

return BST.empty

if length == 1:

return BST(lnk.first)

if length == 2:

return BST(lnk.rest.first, BST(lnk.first))

l, r = lnk, lnk

for i in range(length/2):

r = r.rest

r, r.prev.rest, r.rest.prev = r.rest, BST.empty, BST.empty

return BST(lnk.first, convert(l), convert(r))

1 X2

3

4

3

2

1

4
 1 2 3

5.
Scheme

"The only computer language that is
beautiful"

 - Neal Stephenson

Scheme Synopsis

- No iteration, just recursion

- When to define a helper function?

- When the number of variables you need
to keep track of is bigger than the
number of arguments to the function

- Call a function by surrounding it with
parenthesis

WWSD?
(define f (lambda (x y) (g (cons x y))))

(define g (mu (z) (list (h x) y z)))

(define h (mu (y) (if (> y 0) (+ x (h (- y 1))) 1)))

(f 2 3)

WWSD?
(define x 0)

(define y 1)

(define f (lambda (x y) (g (cons x y))))

(define g (mu (z) (list (h x) y z)))

(define h (mu (y) (if (> y 0) (+ x (h (- y 1))) 1)))

(f 2 3)

f1: lambda [P=G]
x: 2
y: 3

f2: mu1 [P=f1]
z:
r.v:

 2 3

f3: mu2 [P=f2]
y: 2
r.v: 5

f4: mu2 [P=f3]
y: 1
r.v: 3

f5: mu2 P=f4]
y: 0
r.v: 1

 5 3 X

Enter Interpretation

14 eval calls!

4 apply calls!

In your project 4 implementation, how many total
calls to scheme eval and scheme apply would result
from evaluating the following two expressions?
Assume that you are not using the tail call
optimized scheme eval optimized function for
evaluation.

(define (square x) (* x x))

(+ (square 3) (- 3 2))

I Scheme, You Scheme,
We all Scheme for Scheme Streams

Let’s try to compress repetitive data! For example, in the (finite)
sequence

1, 1, 1, 1, 1, 6, 6, 6, 6, 2, 5, 5, 5

there are four runs: one each of 1, 6, 2, and 5. We can represent the
same sequence as a sequence of two-element lists:

(1 5), (6 4), (2 1), (5 3)

We will extend this idea to (possibly infinite) streams. Write a
function called rle that takes in a stream of data, and returns a
corresponding stream of two-element lists, which represents the
run-length encoded version of the stream. You do not have to
consider compressing infinite runs.

I Scheme, You Scheme,
We all Scheme for Scheme Streams

(define (rle s)

 (define (track-run elem st len)

 (cond ((null? st) (cons-stream (list elem len) nil))

 ((= elem (car st)) (track-run elem (cdr-stream st) (+ len 1)))

 (else (cons-stream (list elem len) (rle st))))

)

 (if (null? s)

 nil

 (track-run (car s) (cdr-stream s) 1))

)

6.
Tail Recursion

Recursive calls in a tail context

Chase Your Tail
(define foo
 (lambda (x)
 (if (even? x)
 1
 (foo (- x 1)))))

(define (even1? x)
(if (= 0 x)
#t
(not (even1? (- x 1)

))))

(define (even2? x)
(if (= 0 x)
#t
(odd2? (- x 1)))))

(define (odd2? x)
(if (= 0 x)
#f
(even2? (- x 1)))))

(define (even2? x)
(cond
(= 0 x) #t
(= 1 x) #f
(else (even2? (- x 2)))))

(define (even4? x)
(or
(= 0 x)
(not (even4? (- x 1)))
(even4? (- x 2)))

(define (even5? x)
(or
(= 0 x)
(= 1 x)
(even5? (- x 2))))

(define (even3? x)
(cond
(= 0 x) #t
(= 1 x) #f
(else (begin

(define x (- x 1))
(even3? x)))

Determine which of the following definitions are tail
recursive.

X

X

Tail Reverse
Write a function that takes in a list, lst, and
returns a new list that contains all the elements
of l in reverse order.

(define (reverse lst)

 (define (reverse-tail sofar rest)

 (if

 (reverse-tail)))

 (reverse-tail))

Tail Reverse
Write a function that takes in a list, l, and
returns a new list that contains all the elements
of l in reverse order.

(define (reverse lst)

 (define (reverse-tail sofar rest)

 (if (null? rest)

 sofar

 (reverse-tail (cons (car rest) sofar) (cdr rest))))

 (reverse-tail nil lst))

Tail Insert
Write a function that takes in a list, l, element,
elem, and index, i, and returns a new list that is
the same as l but with elem inserted at index i.

(define (insert l elem i)

(define (helper l i so-far)

 (if (or)

(append)

 (helper)))

(helper))

Tail Insert
Write a function that takes in a list, l, element,
elem, and index, i, and returns a new list that is
the same as l but with elem inserted at index i.

(define (insert l elem i)

(define (helper l i so-far)

 (if (or (null? l) (= i 0))

(append so-far (cons elem l))

 (helper (cdr l) (- i 1) (append so-far (list (car l))))))

(helper l i nil))

8.

Axioms
and worlds that satisfy those axioms

7.

Different Paradigms

Imperative programming
○ Python & Scheme
○ Programmer writes very specific

instructions
Declarative programming
○ Logic
○ Programmer writes what the solution

should look like, computer does rest of
the work to get to the solution

Basic Syntax of Logic

logic> (fact (eats cat fish))

logic> (query (eats cat ?what))

Success!

what: fish

Compound Facts

Conclusion is true if
ALL of the
hypotheses are
true

(fact
(<conclusion>)
(<hypothesis_1>)
…
(<hypothesis_n>))

Recursive Facts

A compound fact
that uses the
same relation in
its conclusion
and its
hypotheses

(fact (parent dan neil))

(fact (parent marv dan))

(fact (ancestor ?p1 ?p2)

 (parent ?p1 ?p2))

(fact (ancestor ?p1 ?p2)

 (parent ?p1 ?p3)

 (ancestor ?p3 ?p2))

Define a set of facts for dank, which takes in a list.
A list is dank if it has the symbol memes inside of it.

Define a set of facts for danker, which takes in a list.
A list is danker if two consecutive entries are each
the symbol memes.

Define a set of facts for dankest, which takes in a list.
A list is dankest if every one of its entries is the
symbol memes.

Define a set of facts for dank, which takes in a list.
A list is dank if it has the symbol memes inside of it.

Define a set of facts for danker, which takes in a list.
A list is danker if two consecutive entries are each
the symbol memes.

Define a set of facts for dankest, which takes in a list.
A list is dankest if every one of its entries is the
symbol memes.

(fact (dank (memes . ?cdr)))
(fact (dank (?car . ?cdr))

 (dank ?cdr))

(fact (danker (memes memes . ?cddr)))
(fact (danker (?car . ?cdr))

 (danker ?cdr))

(fact (dankest ()))
(fact (dankest (memes . ?cdr))

 (dankest ?cdr))

THANKS!
Good luck on the final!

