
Brian Hou
July 26, 2016

Lecture 20: Scheme II

Announcements

• Project 3 is due today (7/26)
• Homework 8 is due tomorrow (7/27)
• Quiz 7 on Thursday (7/28) at the beginning of lecture

• May cover mutable linked lists, mutable trees, or
Scheme I

• Opportunities to earn back points
• Hog composition revisions due tomorrow (7/27)
• Maps composition revisions due Saturday (7/30)
• Homework 7 AutoStyle portion due tomorrow (7/27)

Roadmap

Introduction

Functions

Data

Mutability

Objects

Interpretation

Paradigms

Applications

• This week (Interpretation), the
goals are:
• To learn a new language, Scheme,

in two days!
• To understand how interpreters

work, using Scheme as an example

The let Special Form

• The let special form defines local variables and evaluates
expressions in this new environment

(demo)

scm> (define x 1)
x
scm> (let ((x 10) (y 20))
 (+ x y))
30
scm> x
1

Tail Recursion

Factorial (Again)

(define (fact n)

 (if (= n 0)

 1

 (* n (fact (- n 1)))))

(define (fact n)

 (define (helper n prod)

 (if (= n 0)

 prod

 (helper (- n 1) (* n prod))))

 (helper n 1))

(demo)

scm> (fact 10)

scm> (fact 1000)

Tail Recursion

The Revised7 Report on the Algorithmic Language Scheme:

"Implementations of Scheme are required to be
properly tail-recursive. This allows the execution
of an iterative computation in constant space,
even if the iterative computation is described by
a syntactically recursive procedure."

(define (fact n)

 (define (helper n prod)

 (if (= n 0) prod (helper (- n 1) (* n prod))))

 (helper n 1))

How? Eliminate the middleman!

Tail Calls

• A procedure call that has not yet returned is active

• Some procedure calls are tail calls

• Scheme implementations should support an unbounded number
of active tail calls using only a constant amount of space

• A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda

• The consequent and alternative in a tail context if

• All non-predicate sub-expressions in a tail context cond

• The last sub-expression in a tail context and, or,
begin, or let

• A tail call is a call expression in a tail context:

• The last body sub-expression in a lambda

• The consequent and alternative in a tail context if

• All non-predicate sub-expressions in a tail context cond

• The last sub-expression in a tail context and, or,
begin, or let

Tail Contexts

(define (fact n)

 (define (helper n prod)

 (if (= n 0) prod (helper (- n 1) (* n prod))))

 (helper n 1))

Example: Length

(define (length s)

 (if (null? s) 0

 (+ 1 (length (cdr s)))))

• A call expression is not a tail call if more computation
is still required in the calling procedure

• Linear recursive procedures can often be rewritten to use
tail calls

(define (length-tail s)

 (define (length-iter s n)

 (if (null? s) n

 (length-iter (cdr s) (+ 1 n))))

 (length-iter s 0))

Not a tail context

Lazy Computation

Lazy Computation

• Lazy computation means that computation of a value is
delayed until that value is needed

• In other words, values are computed on demand

(demo)

>>> r = range(11111, 1111111111)
>>> r[20149616]
20160726

Streams

• Streams are lazy Scheme lists: the rest of a list is
computed only when needed

(car (cons 1 2)) -> 1

(cdr (cons 1 2)) -> 2

(cons 1 (cons 2 nil))

(car (cons-stream 1 2)) -> 1

(cdr-stream (cons-stream 1 2)) -> 2

(cons-stream 1 (cons-stream 2 nil))

Streams

• Streams are lazy Scheme lists: the rest of a list is
computed only when needed

• Errors only occur when expressions are evaluated

(demo)

(cons-stream 1 (/ 1 0)) -> (1 . #[promise (not forced)])

(car (cons-stream 1 (/ 1 0))) -> 1

(cdr-stream (cons-stream 1 (/ 1 0))) -> ERROR

Infinite Streams

• An integer stream is a stream of consecutive integers

• The rest of the stream is not computed when the stream is
created

(demo)

(define (int-stream start)

 (cons-stream

 start

 (int-stream (+ start 1))))

Recursively Defined Streams (demo)

(define ones (cons-stream 1 ones))

(define ints

 (cons-stream 1

 (add-streams ones ints)))

(define (add-streams s1 s2)

 (cons-stream

 (+ (car s1) (car s2))

 (add-streams

 (cdr-stream s1)

 (cdr-stream s2))))

1 1 1 1 1 1 ...

 2 3 4 5 6 7 ...1

+

 2

+

A Stream of Primes (demo)

• For a prime k, any larger prime cannot be divisible by k

• Idea: Filter out all numbers that are divisible by k

• This idea is called the Sieve of Eratosthenes

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Break!

Symbolic Programming

Symbolic Programming

(define (square x) (* x x))

'(define (square x) (* x x))

procedure

list

• Lists can be manipulated with car and cdr

• Lists can created and combined with cons, list, append

• We can rewrite Scheme procedures using these tools!

'(1 2 3 4)

(> x 2)

List Comprehensions in Scheme

((* x x) for x in '(1 2 3 4) if (> x 2))

(map (lambda (x) (* x x))
 (filter (lambda (x) (> x 2)) '(1 2 3 4)))

exp

(car exp)

x(car (cddr exp))

(* x x)

(lambda (x) (* x x))
(list 'lambda (list 'x) '(* x x))

(car (cddr (cddr exp)))

(car (cddr (cddr (cddr exp))))

(lambda (x) (> x 2))
(list 'lambda (list 'x) '(> x 2))

(demo)

More Symbolic Programming

Rational numbers!

Summary

• Tail call optimization allows some recursive procedures to
take up a constant amount of space — just like iterative
functions in Python!

• Streams can be used to define implicit sequences

• We can manipulate Scheme programs (as lists) to create new
Scheme programs

• This is one huge language feature that has contributed
to Lisp's staying power over the years

• Look up "macros" to learn more!

