
Marvin Zhang
06/20/2016

Lecture 1: Introduction

Welcome to Berkeley Computer Science!

Humans of CS 61A

2	Lecturers 12	TAs

13	Tutors

100+	Lab	assistants!

400+	Students!!!

Computer Science in one slide

• What problems can computers solve?
• How do we get computers to solve these problems?
• What are general techniques for problem solving?

Systems

Artificial	Intelligence

Security

Networking

Theory

Computational	Biology

...

Natural	Language	Processing

Machine	Learning

Computer	Vision

Planning

Robotics

...

Manipulation

Navigation	and	Locomotion

Perception

Human-Robot	Interaction

...

CS 61A in one slide

• High-level ideas in computer science:
• Abstraction: manage complexity 

by hiding the details
• Paradigms: utilize different 

approaches to programming

• Master these ideas through implementation:
• Learn the Python programming language (& others)
• Complete large programming assignments

• A challenging course that will demand a lot from you

Alternatives to CS 61A

CS	10:	The	Beauty	and	Joy	of	Computing	
cs10.org

Data	Science	8:	Foundations	of	Data	Science	
data8.org

Offered	this	summer!

http://cs10.org
http://data8.org

Details on cs61a.org

Course Policies

http://cs61a.org

Course overview

• Lectures: Mon-Thurs, 11am-12:30pm, 2050 VLSB
• Labs: the most important part of this course
• Discussions: the most important part of this course
• Office hours: the most important part of this course
• Online textbook: composingprograms.com

• Regular homework assignments
• 4 big programming projects
• Weekly quizzes, one midterm, and one final exam
• Lots of special events!

http://composingprograms.com

Total
300 points

Grading

Assignments
150 points

Exams
150 points

Homework 
30	points

Lab 
20	points

Projects 
100	points

Weekly	quizzes 
40	points

Midterm 
40	points

Final 
70	points

A few grading details

• 10 homework assignments, 3 points each
• Can make up points from one homework with surveys

• 12 (graded) lab assignments, 2 points each
• Two lowest lab scores will be dropped

• Written quizzes will be in lecture on Thursdays
• We have sent out instructions for students who cannot attend

Thursday lectures
• One written or coding quiz score will be dropped

• This class is not curved!
• Collaboration, not competition

The limits of collaboration

• Everyone should give and receive help, because everyone
benefits and learns

• There is only one rule:

• Your code is yours, and yours only.

• This means that:
• You cannot copy or use code from anyone except your partner
• You cannot share your code with anyone except your partner

• Share and discuss ideas, not code
• Build good habits now!

Getting help

• Discuss everything in the course, except exams, with your
partner and your classmates
• Teaching is the best way to learn

• Ask and answer questions on Piazza

• Use the course staff! We’re here to help you learn
• Labs and office hours are the perfect time to talk to

the lecturers, TAs, tutors, and lab assistants
• Lab assistants will also be available for checkoffs

during labs

A few last thoughts

• Find all the course details and news on cs61a.org

• The most important course policy is not:
• Grading

• 75% of students in this course receive As and Bs
• There is no curve! All of you can get an A+

• Cheating
• There is a community of staff and students that want

you to succeed, and will help you succeed

• The most important course policy is learning
• Learn a lot, have fun, and welcome to 61A!

http://cs61a.org

And, conveniently, an introduction to Python

An Introduction to Programming

• Every week will center around a theme, and have a
specific set of goals.

• This week (Introduction), the goals are:
• To learn the fundamentals of programming
• To become comfortable with Python

Course organization

Introduction Functions Data Mutability

Objects Interpretation Paradigms Applications

What’s in a program?

• Programs work by manipulating values

• Expressions in programs evaluate to values
• Primitive expressions evaluate directly to values with

minimal work needed

• Operators combine primitives expressions into more
complex expressions

• The Python interpreter evaluates expressions and displays
their values

(demo)

Mathematical expressions (demo)

Call expressions

• In a call expression, the operator and operands
themselves are expressions

• To evaluate this call expression:

1. Evaluate the operator to get a function

2. Evaluate the operands to get its values

3. Apply the function to the values of the operands to
get the final value

add (2 , 3)
operator operands

Nested call expressions

• What does this call expression evaluate to?

• What are the steps that the Python interpreter goes
through to evaluate this expression?

add(add(2, mul(4, 6)), mul(3, 5))

Shakespeare demo!

The Power of Python

